Lixin Dong
교수
City University of Hong Kong
Hong Kong, China
교육:
- Ph.D., Micro Systems Engineering, Nagoya University
- M.S., Mechanical Engineering, Xi’an University of Technology
- B.S., Mechanical Engineering, Xi’an University of Technology
업무 초점:
Dong focuses on nanorobotics, and works in the Department of Biomedical Engineering. He has offered graduate level courses in nanorobotics, nanofabrication, and nanosystems; teaching the building blocks, fabrication, assembly, and characterization of some nanodevices and systems, such as electromechanical systems, photonic systems, and fluidic systems.
학생들을 위한 조언:
“연구실에서 자원봉사를 하여 현장을 느껴보세요.”
연결:
– City University of Hong Kong Advanced Micro-/NanoRobotic Systems Lab
회견:
Q: 귀하의 작업이 어떤 나노기술 기술 분야에 가장 잘 적용됩니까?
Dong:
- 나노전자공학
- 나노센서 및 나노액추에이터
- 나노 계측 및 특성화
- 모델링 및 시뮬레이션
- 나노제조
- 나노광학, 나노포토닉스, 나노광전자공학
- 나노자기학
- 나노 에너지, 환경 및 안전
- 나노로봇공학 및 나노제조
- 나노바이오의학
Q: 귀하의 진로가 나노기술에 초점을 맞추고 있다는 것을 처음 알게 된 것은 언제입니까?
Dong: In the end of 1999, when I went to Japan for my Ph.D. studies, I was originally working with large scale robots to do machining….before that I had been working on machine tools focusing on precision machining. It was at this time that I transferred my work to the nanometer scale. I’m so interested in robotics — and the idea of working with robotics at a small scale is perfect to me.
Q: 현재 어떤 나노기술 응용을 연구하고 있나요?
Dong: Nanorobotics is my main focus. And actually, nanorobotics has two major groups, one is medical focused, such as “swallowable doctors,” where you have nano-sized robots to do surgeries inside the human body, or just do some diagnostics. The other major group is manipulation for manufacturing, actually. This was proposed by Richard Feynman — but he didn’t give the details, the technical details, but he did say that physics doesn’t say no to such things. Then Eric Drexler proposed something like an engine of creation, that is, a machine for assembling molecules. So you can use nanomanipulation to make molecules, using a mechanical method, very different from the traditional chemical method. I am very interested in both of these groups. Actually, I have been working on manipulation for years — starting with manipulation inside the scanning electron microscope, and then the transmission electron microscoperoups, one is medical focused, such as “swallowable doctors,” where you have nano-sized robots to do surgeries inside the human body, or just do some diagnostics. The other major group is manipulation for manufacturing, actually. This was proposed by Richard Feynman — but he didn’t give the details, the technical details, but he did say that physics doesn’t say no to such things. Then Eric Drexler proposed something like an engine of creation, that is, a machine for assembling molecules. So you can use nanomanipulation to make molecules, using a mechanical method, very different from the traditional chemical method. I am very interested in both of these groups. Actually, I have been working on manipulation for years — starting with manipulation inside the scanning electron microscope, and then the transmission electron microscope.
Q. 나노기술을 활용하면서 가장 보람찬 점은 무엇인가요?
Dong: Nanotechnology is a really exciting field…and a broad field, so you can learn a lot of new things. I think both robotics and nanotechnology involve a lot of interesting subfields as well. For instance, nanotechnology involves nanophysics, nanochemistry, nanomaterials, nanoelectronics, and photonics. And also I’ve always been interested in robotics. With robotics, we want to make something like ourselves, and of course this also involves everything. The field of nanotechnology is simply a very interesting field — and one that requires strong creativity. You can do what you are thinking, dreaming, or imagining. So it’s really fun, and everything is exciting. Anything you create might be the first one ever created in the world! You can make the impossible into the possible.
Q: 당신이 작업한 일이 세상에 어떻게 긍정적인 영향을 미쳤는지 보여주는 예가 있습니까?
Dong: Oh yes….I have been collaborating with others at ETH Zurich on something called “swimming robots.” We call that “artificial bacteria flagella.” That is a coil, and actually we can use an external rotating magnetic field, to make the robot rotate and to make it “swim.” That said, I think the potential impact could be very big, because, that could be the first prototype for the “swallowable doctor.” It’s still very primitive and in a preliminary stage, but I think the potential impact is high. It’s exciting to work in this area because we are all still discovering new nanomaterials and structures, which will change what we can do. Another example is characterization, where we can understand the different properties of nanomaterials or nanostructures in a single structure. I think the impact of working in nanotechnology is very fundamental, but important. And we provide some experimental tools for people like materials scientists, physicists, chemists, and others that will change the systems, products, and solutions of the future.
Q: 향후 나노기술의 상용화가 세계에 가장 큰 긍정적인 영향을 미칠 것으로 예상되는 분야는 무엇입니까?
Dong: While the future commercialization of nanotechnology will involve many fields, I would pick up post-silicon nanoelectronics such as carbon-based chips and quantum devices, where nanorobotic manipulation may play a significant role in fabrication, assembly, and characterization. Bottom-up fashion may take over the conventional lithography-based processes. Another one seeming equally great is the emerging nanorobotic medicine featured by targeted drug delivery, local diagnosis, sampling, and in-body therapy.
Q: 지금까지 나노기술이 세계에 미친 가장 큰 영향은 무엇이라고 생각하시나요?
Dong: The first usable nanotechnology actually was the AFM cantilever with a nanotube tip, I think. That was commercialized at the beginning of 2000. You know some people like Meyya Meyyapan’s group still all collaborate on it. They opened a spin-off to assemble nanotubes and a combination of AFM cantilevers to make a very sharp and very tough AFM cantilever tip. And I think that the use of Scanning Probe Microscopes (SPM) is very successful, as an example of nanotechnology. Dip-pen nanolithography based on an AFM was commercially very successful. My own group is initiating a nanotube fountain pen to directly “write” 3D metallic nanostructures—I’ll give a talk on this tomorrow at this IEEE-NANO conference. The nano fountain pen can also use an AFM as a “writer”.
Q: 지난 10년 동안 나노기술은 연구실을 벗어나 사회에 실질적인 영향을 미치고 있습니다. 나노기술의 상용화에 도움이 되고 새로운 제품이나 프로세스를 탄생시키는 데 도움이 되는 노력을 하신 적이 있습니까?
Dong: I have been working on a 3D printer for metallic nanostructures based on the nanotube fountain pen we developed more than ten years ago, and a non-invasive nanorobotic surgery system based on the swimming nanorobots with the aim of commercialization. However, both are somewhat mid- or long-term projects and no products are available yet.
Q: 대학에서의 훈련이 나노기술 작업에 도움이 되었나요?
Dong: I think so. But you have to stay involved….there are many conferences, and it is important to connect. Nano is not so special actually, in the scientific aspects, but is more important in the technology and the engineering aspects. That’s why Richard Feynman said that we may not have new physics here, but we will have a completely new way to change the world. He said that “we could arrange atoms one by one, just as we want them,” to assemble a new world.
Q. 멘토가 있나요? 대학 시절에 그랬나요?
Dong: Yes I think so, guidance counselors provided some assistance, but I think my ideas have been inspired mostly by collaboration. For example, we created a very simple structure, a sphere on a nanotube. But, we never thought this was something useful. But a friend of mine, once when he saw it said, “well if you have a pair of this, you can make an optical enhancer!” If you use two of these nanostructures, and put them very close together, you can use the surface plasma resonance to make an antenna that can work with the resonance of light. This is actually a very interesting structure, and it has very important applications, for instance we can use this optical antenna to improve the absorption of the solar energy of solar cells. You will have better solar cells.
Q: 만약 다시 이 일을 해야 한다면, 여전히 나노기술 응용에 집중하시겠습니까?
Dong: I think this is my life career, because the dreams of the future are very exciting. Working at the nanoscale, you can make just about everything that is thermodynamically stable. You can assemble anything that you can design. And I am inspired by nanotechnology applications — I think that nanorobotic medicine is a very important example — even if you make conservative progress in this field. For example, some of my collaborators are working on surgeries inside the eyes. In the eye, you can see your robots, so it’s relatively easy. That’s very interesting. And the next step is medicine through the blood vessel. You can send some drugs with a robot to deliver it to targeted cells, such as cancer cells. Then, consider manufacturing with nanotechnology — so you can make a new cell, for example, after you kill a bad one. You find a cell that is getting old, you can make a young one. A lot of things will be changed. So I think nanotechnology is definitely a worthy focus for a life. I intend to continue to struggle with the challenges of nanotechnology because the future is what we dream.
Q. 대학생들에게 조언을 해주신다면요?
Dong: I’m encouraging my university students that nanotechnology can help them turn dreams into reality — and that’s really amazing. Pre-university students can start learning now by working with models –they could make models of molecules, and learn from some micrographs, some websites, and some scientific fiction — actually some examples in scientific fiction are now becoming reality.