Home > News > Slowly Cooled DNA Transforms Disordered Nanoparticles into Orderly Crystal

Slowly Cooled DNA Transforms Disordered Nanoparticles into Orderly Crystal

Bookmark and Share

An electron microscope image (left) shows a faceted single crystal consisting of nanoparticles brought together using DNA interactions. A schematic (right) illustrates how the lattice of nanoparticles is held together by DNA, taken from a simulation used to model the system. The observed crystal shape is a rhombic dodecahedron, a 12-sided polyhedron made up of congruent rhombic faces.Image Credit: Northwestern University

Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern University research team is the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature. “Single crystals are the backbone of many things we rely on -- diamonds for beauty as well as industrial applications, sapphires for lasers and silicon for electronics,” said nanoscientist Chad A. Mirkin. “The precise placement of atoms within a well-defined lattice defines these high-quality crystals. “Now we can do the same with nanomaterials and DNA, the blueprint of life,” Mirkin said. “Our method could lead to novel technologies and even enable new industries, much as the ability to grow silicon in perfect crystalline arrangements made possible the multibillion-dollar semiconductor industry.” His research group developed the “recipe” for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. This single-crystal recipe builds on superlattice techniques Mirkin’s lab has been developing for nearly two decades. In this recent work, Mirkin, an experimentalist, teamed up with Monica Olvera de la Cruz, a theoretician, to evaluate the new technique and develop an understanding of it. Given a set of nanoparticles and a specific type of DNA, Olvera de la Cruz showed they can accurately predict the 3-D structure, or crystal shape, into which the disordered components will self-assemble.